

INSTITUTE
OF NUCLEAR
PHYSICS

Symposium on Solving Problems in Research Reactors

Ibaraki University

5th December 2025

STATUS OF MEDICAL RADIOISOTOPE PRODUCTION AND FUTURE PLANS FOR Ac-225

Institute of Nuclear Physics

Sayabek SAKHIYEV, Yelena CHAKROVA, Pavel ORESHKIN, Albina BORISSENKO,

Shamil GIZATULIN
e.chakrova@inp.kz

Status of Nuclear Medicine in Kazakhstan

2001 – start of domestic production of radiopharmaceuticals

- 1 operational Nuclear Medicine Centre

2025

- 11 Nuclear Medicine Centres in operation
- 2 Centres under construction

Radiopharmaceuticals:

- ^{99m}Tc solution from $^{99}\text{Mo}/^{99m}\text{Tc}$ gel generators from 2001
- Sodium iodide ^{131}I , oral solution from 2002
- Fluorodeoxyglukose ^{18}F , injection from 2021

INP fully covers local demand in radiopharmaceuticals with ^{99m}Tc and ^{131}I and 70% of local demand in radiopharmaceuticals with ^{18}F

Basic facilities for isotope production

C-30 cyclotron:
Proton: max. 30 MeV,
3 solid target, 2 liquid target

^{18}F , ^{57}Co , ^{109}Cd
 ^{68}Ge , ^{225}Ac

WWR-K reactor, 6 MW
Max thermal neutron flux:
 $2.2 \cdot 10^{14} \text{ n} \cdot \text{cm}^{-2} \text{s}^{-1}$

$^{99}\text{Mo}/^{99m}\text{Tc}$, ^{131}I , ^{177}Lu ,
 ^{192}Ir , ^{60}Co , ^{124}Sb , ^{204}Tl , ^{85}Sr , ^{134}Cs

99mTc

Sodium pertechnetate ^{99m}Tc , injection from $^{99}\text{Mo}/^{99m}\text{Tc}$ gel-generator

Irradiation: reactor WWR-K, $1 \cdot 10^{14} \text{ n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$, MoO_3 , 15 g, 120 h

^{99}Mo bulk solution production: alkaline dissolution of irradiated MoO_3

Premises: **class C**

$^{99}\text{Mo}/^{99m}\text{Tc}$ gel-generator production/
assembling: hot cells **class C**

Production schedule: 2 times/month

Transportation: 24-30 h

Generator activity at delivery 18 GBq

- Eurasian Patent No. 047185 of 19 June 2024 «Generator for producing sterile radionuclides»
- Eurasian Patent No. 048752 of 28 December 2024 «Automatic control system for the process of preparing a matrix with a radioisotope»

¹⁸F

Fluorodeoxyglucose ¹⁸F, injection

Irradiation: cyclotron C-30, 18 MeV protons,
2 ml enriched water, 2- 3 h.

Synthesis modules: Synthera, Neptis,
dispensing - Thymotheo LT

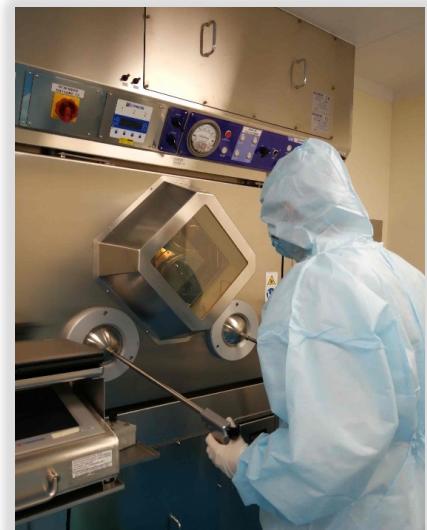
Premises: **class C**

Production: hot cells **class C**

Dispensing/membrane sterilization: hot cells **class A**

Production schedule: 3 times/day

Transportation: 1- 7 h



¹³¹I

Sodium iodide ¹³¹I for therapy

Irradiation: reactor WWR-K, $1 \cdot 10^{14}$ n·cm⁻²·s⁻¹, TeO₂, 20 g, 72-120 h

¹³¹I bulk solution production: dry distillation at 700°C with sorption of ¹³¹I in alkaline buffer solution

Premises: **class D**

Production/dispensing/sterilization: hot cells **class C**

Production schedule: 4 times/month,
individual doses,

Transportation 24-30 h to Astana and Semey

EURASIAN PATENT № 050009 of 30 May 2025

“Method for production of a bulk solution of iodine-131 isotope”

¹⁷⁷Lu

Lutetium chloride ¹⁷⁷Lu, solution for labeling

Direct neutron activation of enriched Lu (we use 85% of ¹⁷⁶Lu)

Indirect neutron activation

Irradiation: reactor WWR-K, $1 \cdot 10^{14}$, $\text{n} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$, 18 days

¹⁷⁶Lu₂O₃, 20 mg

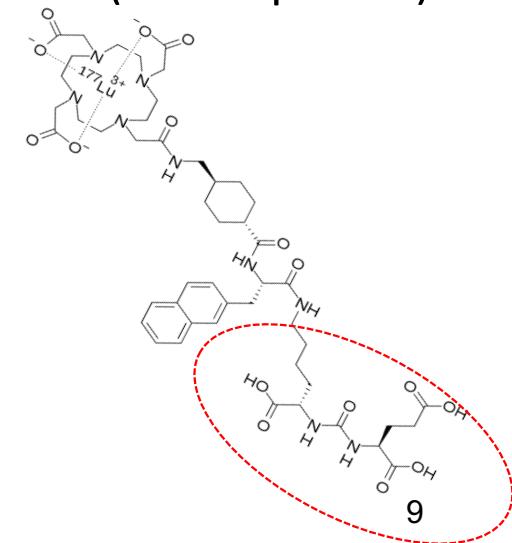
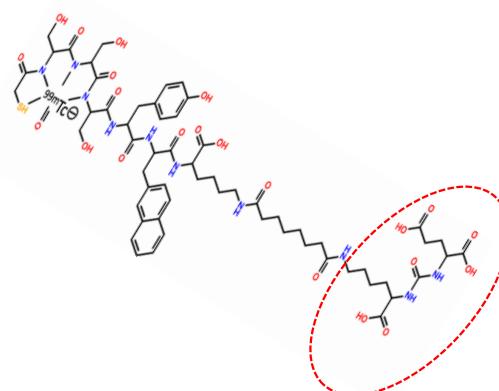
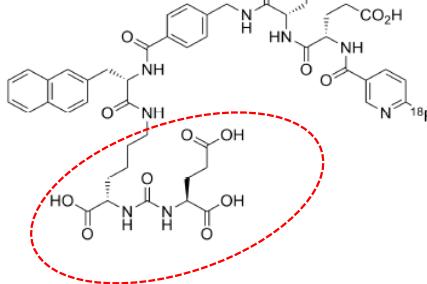
QC according to Ph.Eur. 11.0, Monograph “Lutetium (¹⁷⁷Lu) solution for radiolabeling”

Premises: **class D**

Production/dispensing/sterilization:

hot cells **class C**

Production schedule: as needed for R&D

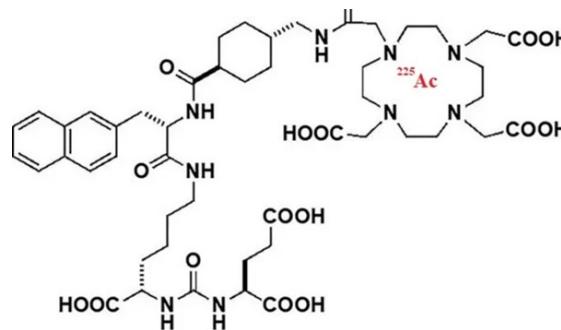



What are we working on today? - Development of a theranostic group of RPhs for the diagnosis and treatment of prostate cancer

Step 1. Based on the developed technologies for production of ^{18}F , $^{99\text{m}}\text{Tc}$, ^{177}Lu and commercially available PSMA inhibitor molecules, to obtain:

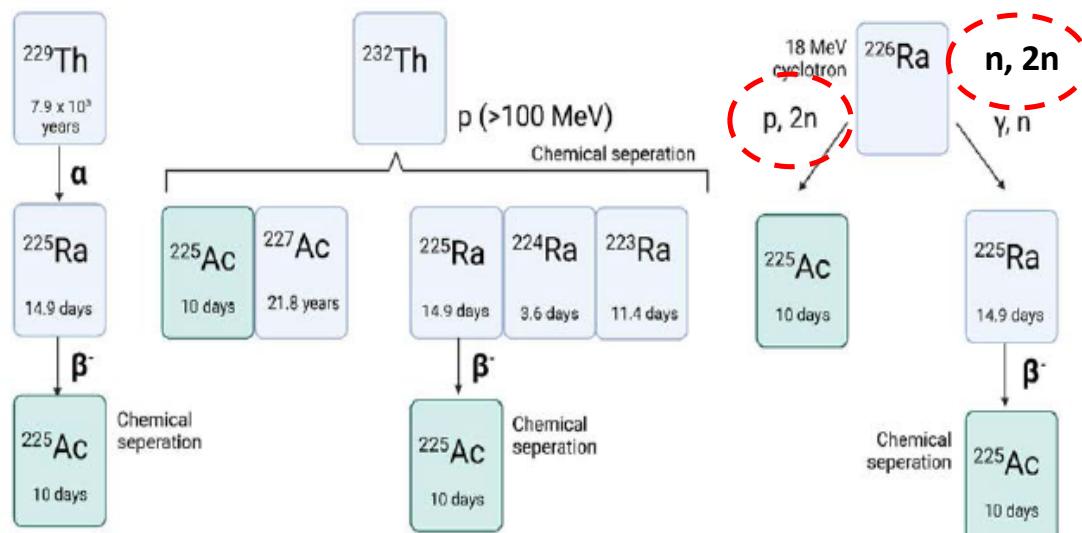
^{18}F -PSMA-1007 – imaging using PET-CT, including for treatment control (implemented into production)

$^{99\text{m}}\text{Tc}$ -PSMA-I&T – imaging using SPECT-CT, including for treatment control (development)

^{177}Lu /PSMA- I&T – targeted therapy (implemented into production)



²²⁵Ac


Future development of the theranostic group of RPhs for the diagnosis and treatment of prostate cancer

Step 2

1. Assessment of the ²²⁵Ac production:
 - at the research reactor WWR-K
 - at the cyclotron Cyclone-30
2. Design and construction of research and production facilities for working with alpha-emitting isotopes
3. Development and implementation of the ²²⁵Ac solution production technology
4. Development and implementation of the technology for production of ²²⁵Ac-PSMA- I&T for targeted therapy

^{225}Ac Approaches to Actinium-225 Production

Production and quality control of actinium-225 radiopharmaceuticals / Vienna: International Atomic Energy Agency, 2024 / Series: IAEA TECDOC no. 2057;
Schematic overview on the different production methods of ^{225}Ac (courtesy of V. Radchenko, TRIUMF, and of J. Kleynhans, KU Leuven)

$n, 2n$

Year 2008
Research Reactor WWR-K

$p, 2n$

Year 2025
Cyclotron Cyclone-30

The current primary supply of ^{225}Ac comes from thorium-229 decay. Process involves "milking" of the generator and separation of ^{225}Ac from other thorium decay products.

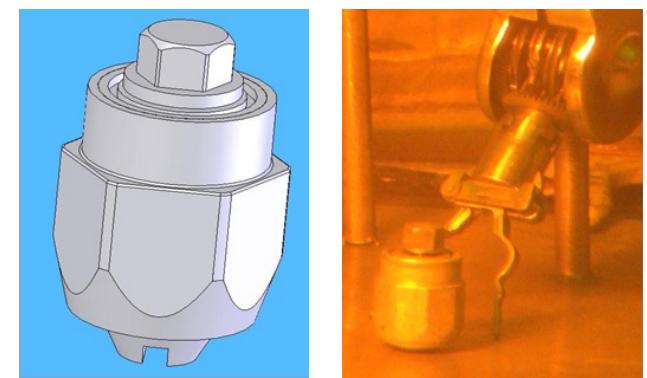
3 main sources: Oak Ridge National Laboratory (ORNL, USA), the Institute for Transuranium Elements (ITU, Karlsruhe, Germany), and the A.I. Leipunsky Institute of Physics and Power Engineering (Russia). Additional smaller sources of ^{229}Th are available in Canadian Nuclear Laboratories and Belgian Nuclear Research Centre.

²²⁵Ac

Assessment of ²²⁵Ac production at the WWR-K research reactor

Assessment of ²²⁵Ac production feasibility at the WWR-K reactor was carried out in 2008 in collaboration with NNC RK.

A series of neutron-physics calculations using the MCU-REA* code was done by Dr. Gizatulin Reactor's team for irradiation of ²²⁶Ra under three scenarios: **no shielding, cadmium shielding, and boron-carbide shielding** to suppress thermal neutrons.


*1. E. A. Gomin, M. I. Gurevich, L. B. Maiorov, C. B. Marin "The MCU-3 code for Monte Carlo calculation neutronics parameters of nuclear reactors", Vol.1, Description of an application and manual for users", Preprint IAE-5772/5, M., 1994

Results:

- A 1-mm Cd screen effectively suppresses thermal neutrons but leaves a significant fraction of epithermal neutrons.
- Boron-carbide shielding provides the most efficient reduction of low-energy neutrons parasitic for ²²⁵Ra production.
- The calculated **production rate of ²²⁵Ra is ~0.3 MBq/h** per 1 g ²²⁶Ra for in-core irradiation with 1-mm B₄C shielding

Experiment:

- Target – 10 ug ²²⁶Ra
- In-core irradiation in special container with 1mm boron carbide shielding during 50 h
- Calculated equilibrium ²²⁵Ac activity after irradiation and 18 days decay - 7±2 kBq
- Measured ²²⁵Ac activity after chemical separation - 5±1 kBq

225Ac Assessment of ^{225}Ac production at cyclotron Cyclone-30

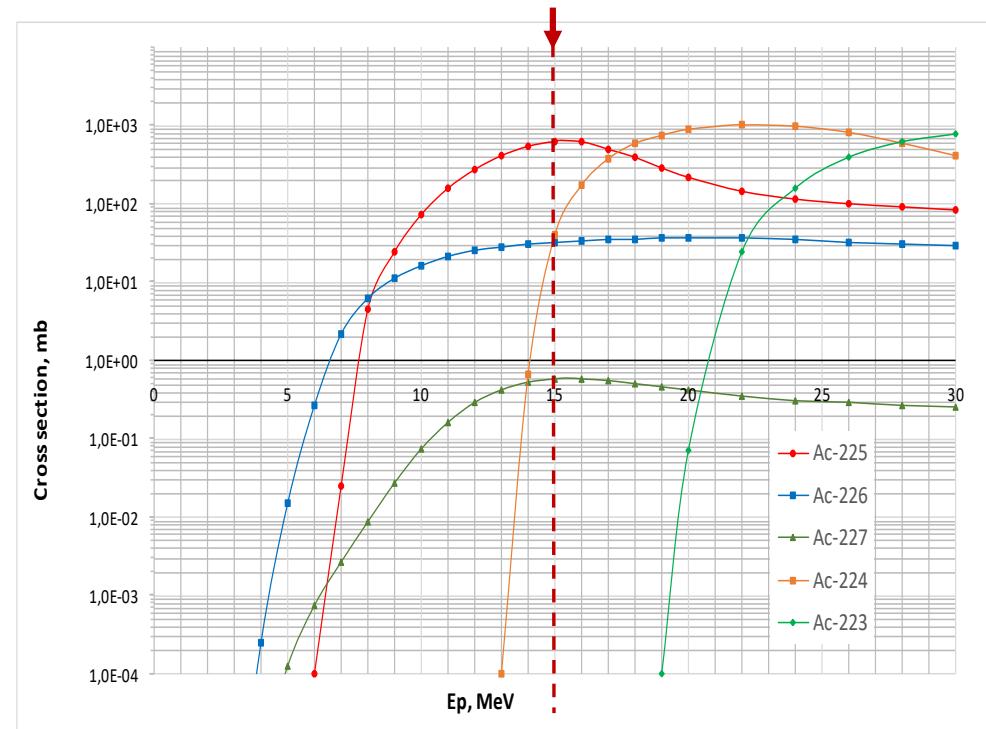
In 2025, the review of nuclear reactions of accelerated protons with ^{226}Ra was carried out.

Assumed target - metallic radium; Proton energy – up to 30 MeV

The reaction cross sections were taken from the TENDL* nuclear data library

* A.J. Koning, D. Rochman, J. Sublet, N. Dzysiuk, M. Fleming and S. van der Marck, "TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology", Nuclear Data Sheets 155 (2019) 1

List of isotopes produced in reactions of protons with ^{226}Ra are given in the table:


Isotope	Half-life	Energy of threshold, MeV	Maximum cross section (up to 30 MeV), mb	Isotope	Half-life	Energy of threshold, MeV	Maximum cross section (up to 30 MeV), mb
^{223}Ac	2,2 m	19,2	796	^{224}Ra	3,6 d	2,83	58,35
^{224}Ac	2,9 h	13,55	1035	^{225}Ra	14,8 d	4,19	104,6
^{225}Ac	10 d	6,85	636	^{220}Fr	27,4 s	7,2	0,81
^{226}Ac	29,4 h	1,43	36,7	^{221}Fr	4,9 m	0,89	8
^{227}Ac	21,8 y	0,0	0,59	^{222}Fr	14,4 m	0,0	23,56
^{221}Ra	29 s	21,3	10^{-4}	^{223}Fr	21,8 m	0,0	20,0
^{222}Ra	38 s	14,5	0,86	^{224}Fr	3,3 m	5,75	0,12
^{223}Ra	11,4 d	9,34	7,13				

^{225}Ac

Assessment of ^{225}Ac production at the cyclotron Cyclone-30

Results of the review of nuclear reactions :

- The main impurity isotopes are $^{226}, ^{227}\text{Ac}$
- The threshold energy for nuclear reactions producing isotopes ^{225}Ac and $^{226}, ^{227}\text{Ac}$ have similar values
- The maximum cross sections for reactions producing isotopes ^{225}Ac and $^{226}, ^{227}\text{Ac}$ also correspond to similar proton energy values (~ 15 MeV), so it is not possible to specify the optimal proton energy range for a “purer” production of the target isotope;
- Technological process must include a time period for decay of impurities

Design and construction of research and production facilities for work with alpha-emitting isotopes

Development of ^{225}Ac production is limited by lack of suitable facilities for handling α - and high- γ -emitting ^{226}Ra , as well as limited availability of ^{226}Ra

Steps we are taking to overcome these difficulties:

- funding request for designing and equipping dedicated α -/high- γ laboratories compliant with radiological safety requirements for ^{226}Ra handling
- looking for a reliable source of ^{226}Ra

きいてくれてありがとう

kiite kurete arigatou

Thank you for attention