

Construction Experience of the Jordan Research and Training Reactor

Dec. 2025.

B. J. Jun

Overall

~1985: New Engineers for HANARO Construction Project

➤ KAERI: Handling of HANARO Construction

KEPCO: Handling of Hanbit-3 Construction

➤ 1995: Initial Critical of HANARO & Hanbit-3

➤ KAERI: Study on New RRs

KEPCO: Construction of Many Domestic NPPs + Design of APR1400

➤ 2009: First chances to export RR & NPPs

4 Dec.: KDC became the preferred bidder of JRTR construction.

27 Dec.: KEPCO contracted 4 Barakah units with ENEC.

➤ 2017: Turnover of JRTR to JAEC

Motivation to Study New RRs

- 1998: IAEA RCA selected Korea as the lead country of RR sector.
→ HANARO became focal point of technical cooperation.
- 1999: Japan renamed 'Nuclear Cooperation in Asia' to FNCA.
→ HANARO team actively participated in technical sessions of RR.

➤ HANARO engineers began to understand RR status in the region better!

- ✓ Resolving Problems in HANARO Operation
- ✓ Superior Performance of Atomized Fuel
- ✓ Expected Completion of Major HANARO Utilization Facilities in around 2010

➤ 2003: Initiation of a Project to Study New RRs

Activities Relevant to New RRs

- Design of high-performance compact cores, etc. using U-Mo pin type fuel
- Talks with a few Asian countries for potential replacement of aged reactors
- 2005: Cross visits between HANARO & HFR
- April 2006: NRG asked KAERI for the participation in the Pallas project.
- Sep. 2007: NRG invited KAERI to Pallas bidding.
 - HANARO level task → KAERI level
 - Formation of a consortium with industry
 - 11 May 2009: Submission of vendor documents
 - 24 June 2009: Failed to become the preferred bidder
 - 15 Jan. 2010: NRG stopped the bidding.
- 2009: JRTR bidding

JRTR Bidding

15 Jan. 2009: Jordan Atomic Energy Commission (JAEC) issued Request For Proposal (RFP) of JRTR, but KAERI was not included in their vendor list.

- By chance, KAERI was informed about the JRTR.
- KAERI requested JAEC the RFP.
- KAERI – DAEWOO E&C Consortium (KDC) was formed.
- KAERI changed from pin to plate type fuel for the JRTR.
- 17 May 2009: Submission of vendor documents
- 4 Dec. 2009: KDC became the preferred bidder.

- ❖ Interest of Korean government & industry in RR export promoted through the Pallas
→ Very helpful for the success of JRTR bidding

Expected Role of JRTR - Overall

Effectively utilize JRTR for;

- Ongoing nuclear power program of Jordan
- Enhancing level of sci. & tech. indispensable for the national development

- ❖ Through the JRTR construction process as well!

Expected Role of JRTR – Nuclear Power

- Increasing population and industrial development → Rapidly increasing electricity demand
- No oil or gas resource economically available
- Energy import: ~ 97% of total energy demand and ~ 22% of GDP in 2008

→ Ongoing nuclear power program

- A preferred vendor for the construction of 1 GW scale NPP
- Construction plan: 2015 ~ 2022

JRTR

- ✓ Develop Human Resource for Successful Construction and Operation of the NPP
- ✓ Establish Infrastructure Ensuring NPP Safety to Protect People

Human Resource Development for NPP

- Students of JUST(Jordan Univ. of Sci. Tech.) nuclear engineering dept. had been graduating.
- Many trainees including the graduates had been dispatched abroad: Korea, France, Russia, China, Japan, etc.
- JRTR construction project also includes education and training program for the operation staff of JRTR
 - Direct participation of trained personnel in the construction, commissioning and operation of JRTR → Accumulate practical experiences and knowledge
 - Become the key members of Jordan nuclear projects!
- Utilize JRTR for the nuclear training after construction.

Expected Role of JRTR – Sci. & Tech.

- Enhance the level of sci. & tech.: Neutron beam applications, RI production, NAA, NTD of silicon, Various basic and applied research.
- SESAME (Synchrotron-Light for Experimental Science and Application in the Middle East)
 - Member States: Bahrain, Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority, Turkey
 - Commenced in 1999 → Official project under the auspices of UNESCO in 2002 with its target operation from 2015
 - The first synchrotron light source in the Middle East
 - Promote peace in the region as the “Door Opener” by providing a common utilization field to scientists of member states openly hostile.
- JRTR: Best neutron beams among RRs of all SESAME member states
 - Expand co-utilization to other JRTR applications.

JRTR RFP

- Due of offer: 15 April 2009
- Full power operation: 2012
 - Preparation of vendor documents: ~ 2 months
 - Only DAEWOO E&C was willing to participate. → KDC

- 1) Design & construction of JRTR for 5 MW reactor and related buildings, RI production facility, Education & training center
- 2) Education & training of Jordan staff for the facility operation - Operators of reactor & reactor utilization facilities.

❖ Radwaste treatment facility (RTF) was not included in the scope of supply.

Initial Stage of JRTR Construction

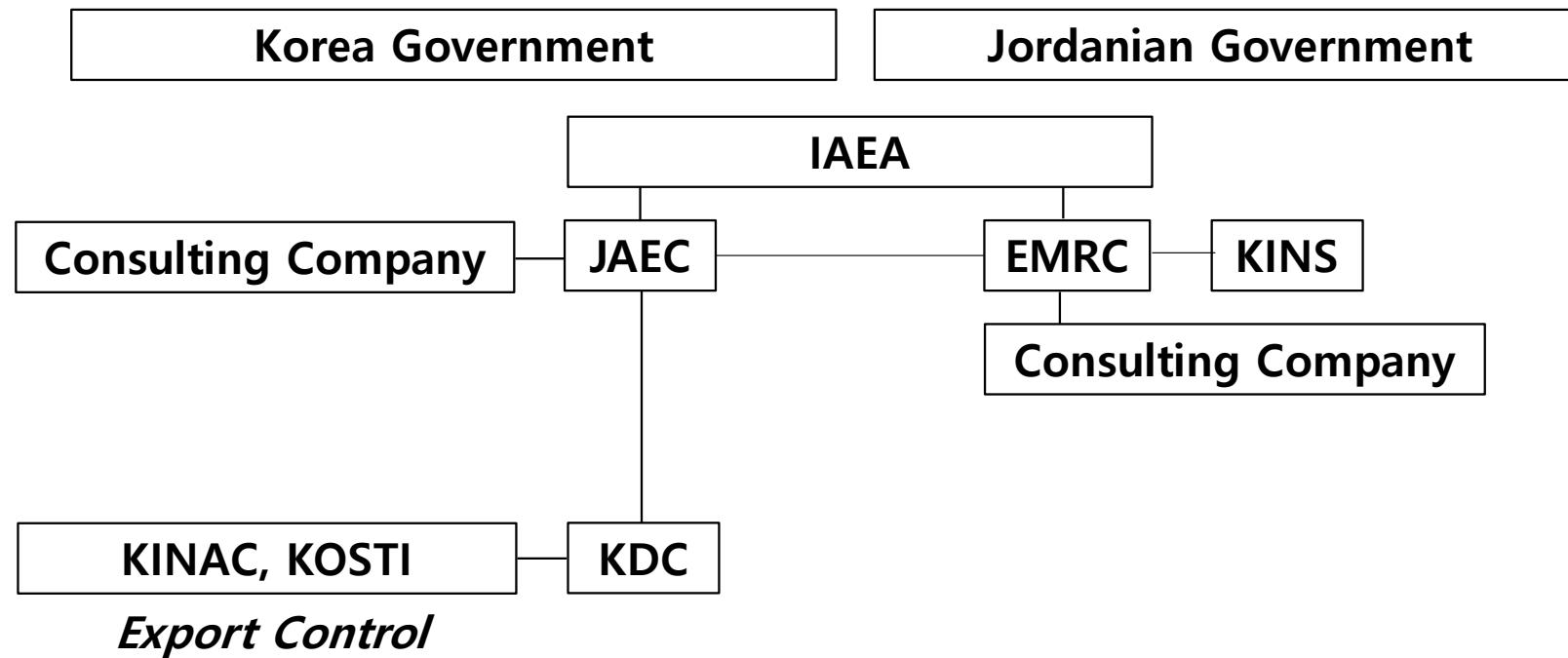
- Hot time for Pallas bidding → Small group of HANARO team for the conceptual design
 - ❖ Pin type fuel → Plate type
- 17 May 2009: Submission of vendor documents
- 4 Dec. 2009: JAEC declared KDC preferred bidder.
- 30 March 2010: Contract signing
- 1 August 2010: Official launch of the project
- 23 Nov. 2010: Ground-breaking ceremony with the king of Jordan
- Accommodation building for KDC staff
- Education & training center: Utilized for KDC offices until turn over to JAEC

Arab Spring

- Began in late 2010 → Jordan and Syria in Jan. 2011
 - ✓ Jordan: Nonviolent protests calling for fixing the existing regime rather than its change
 - Violent protest of local residents against JRTR construction
 - ✓ Syria: Escalated to full-scale civil-war
 - Lots of refugees into Irbid Governorate
 - Shortest distance to the border ~ 11km: Occasional sounds of shelling until the end of project
 - During a certain time period: explosions in between the site and the border, with visible rising smokes → JAEC made a contingency plan to evacuate workers.
- Anxiety to stakeholders of the JRTR project, especially to workers in the site
- Little impact to the project implementation

Fukushima Accident

- JRTR site: Far from sea shore and around 600m elevation → No tsunami
- Core: Always in the water of sufficiently large pool → No safety concern from black out
- However, the accident which had been considered not likely to occur actually occurred in Fukushima and its consequence was tremendous. → Reconsider safety of JRTR!
- New guidelines were not available yet.
- JAEC, IAEA experts and KDC discussed about enhancement of the JRTR safety.
- 30 July 2011: Application of construction permit to JNRC along the project schedule


Safety Assessment for Construction Permit

- ✓ Existing safety principles for the global reactors were in doubt.
- ✓ Nuclear safety related legislation of Jordan was incomplete.
- ✓ Experience and capability of JNRC was not sufficient.
- ✓ Assistance of IAEA + Special agreement with KINS (Korea Institute of Nuclear Safety) + US Consulting Company
 - Basically, Korean law and rules for JRTR regulation
 - Participation of many KINS experts
 - Education and training of JNRC staff by KINS
- Much longer time than the original project schedule
- Created additional items of safety enhancement.
- ❖ 2014: JNRC moved to Radiation & Nuclear sector of Energy and Minerals Regulatory Commission (EMRC).

Consulting Contract of JAEC

- JAEC contracted with a French consulting company.
- The company began advice from the end of 2012 and review from the beginning.
 - Lots of questions & recommendations for additional enhancement of safety
 - ❖ Its consulting ended before fuel loading.

Project Implementation Scheme

Project Delay & Additional Cost

- 6 Dec. 2012: Start of limited works
- 12 May 2013: First concrete
- 15 August 2013: Construction permit
- Delay of project schedule: 16.5 months
- JAEC agreed to postpone the target date of completion for 14.5 months.
- JAEC decided to build the RTF beside JRTR site. → Requested KDC to design and to construct it too.
- JAEC agreed to increase the project cost for the RTF and additional items for the safety enhancement, but not for the additional cost caused by the elongated project period.

Education & Training of JAEC Staff

- Education from Jan. 2012 at KAERI
 - Began to participate in the reactor design and construction
- Last batch education at KAERI: Candidates for reactor operators
 - 7 May 2015: Began to participate in the commissioning tests
 - EMRC requested KINS to implement the exam for RO licenses.
 - Sufficient ROs for the initial fuel loading on 21 April 2016
 - ~ 1 year after: SRO exam
 - ❖ JAEC requested EMRC to authorize HANARO SROs for the JRTR SROs.

Commissioning

- JAEC did not allow KDC to hire workers from third countries.
 - Experienced workers for the commissioning and maintenance of systems were not sufficient in Jordan
 - JAEC allowed DAEWOO to hire third country workers.
 - After turnover, JAEC temporally hired many of them for the JRTR maintenance.
- No demi-water supplier in Jordan
 - DAEWOO got it from a power plant operated by KEPCO(~200km distant).
 - A water tank truck could make only one round trip in a day.
- From the fuel arrival at the site: Gendarmeries began to control access to the site.
 - Independent of JAEC
 - Access control to the site especially for the transport of equipment became much stricter than before.

RPT & Nuclear Analyses

- Under the control of HAHARO SROs
- 31 Oct. 2016: End of RPT
 - JAEC temporally hired three specialists retired from KAERI.
 - ✓ Two of them had HAHARO SRO licenses.
 - ✓ Led JAEC departments for reactor operation, mechanics and I&C, respectively
- Monte Carlo code McCARD + ENDF B-VII.0 for the JRTR nuclear design
- ENDF B-VII.1 became available from Nov. 2011.
- JAEC: MCNP6 + ENDF B-VII.1 for their review calculations.
- Practically same results in the criticality and neutron reaction rate distributions

RPT Results

- Confirmed excellent accuracy of design
 - Criticality $< 1\text{mk}$ difference
 - Neutron reaction rates in the fuel region: $\sigma = 2.64\%$ for 165 points
- $|\rho_{ex}^M - \rho_{ex}^D| >$ acceptance criterion 10%
 - No fault in the design and experiments → NCR with ‘Use As Is’ → A hot issue
 - JAEC reevaluated ρ_{ex}^M from raw data: Delayed neutron data from ENDF/B-VII.1
 - Satisfied the acceptance criterion
 - KAERI could not say the delayed neutron data of ENDF/B-VII.0 problematic.
 - Later on, they devised a logical way of correction to the problematic experimental data to deduce a better ρ_{ex}^M .

Initial Operation

- 7 Dec. 2016: JRTR inauguration
- 26 Feb. 2017: EMRC authorized conditional JRTR operation.
- JAEC prepared 'Initial Operation Test' (IOT) plan and modified RPT procedures to reflect changes in situation and reactor conditions from the previous RPT period.
- JAEC strongly requested to measure the neutron reaction rate distribution for all fuel assemblies and to include the neutron spectrum measurement.
 - KAERI prepared additional materials and devices for the two tests.
- All tests were planned, analyzed and implemented by the responsibility of JAEC with the assistance of KDC when necessary.
- 15 June 2017: Turn over of JRTR to JAEC except RTF and RI production facility
- 15 Oct. 2017: Turn over of RTF and RI production facility
- 12 Nov. 2017: Final JRTR operation permit

Closing Remarks

- Several-years study for new RRs + works already in progress to bid Pallas: Significantly contributed to the success of JRTR bidding.
- Fukushima accident during the early stage of the project: Induced significant increase of cost and period of the project.
 - No responsibility of both sides was agreed.
- After final turnover, KDC assisted JAEC's JRTR operation and continued cooperation.
 - The project had been implemented under the spirit of mutual benefit with strong backing of both governments.
- JAEC temporally hired three specialists retired from KAERI to lead initial JRTR operation and several third country workers of KDC for system maintenance. JAEC staff gradually took over all responsibilities.
- 28 Nov. 2018: Dr. Khaled Toukan, Chairman of JAEC addressed the success of JRTR project at the Ministerial Conference on Nuclear Science and Technology at the IAEA.
- 24 - 28 March 2019: JAEC hosted RRFM/IGORR

Recent Status of JRTR

- 7 March 2024: Dr. Khaled Toukan announced;
 - JRTR is operated entirely by Jordanian personnel.
 - It is a key pillar of progress in peaceful nuclear energy applications, not only at the Jordanian level but also at the regional level.
 - Plans for expanding its utilization through producing other medical RIs namely, Tc-99m and Ho-166, and for undertaking NTD.
- The planned nuclear power project has not been accomplished.
 - They are making strides towards the introduction of SMRs to produce both electricity and drinking water.
 - The infrastructure and experience of Jordan accumulated through the construction and operation of JRTR: Beneficial for their SMR project if it is realized.

Thanks!